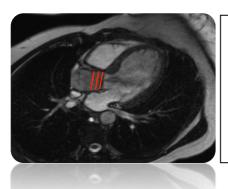
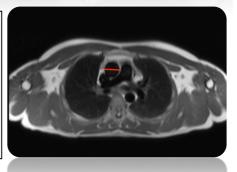
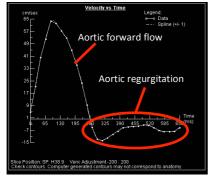

Cardiac MRI Essentials


Aortic regurgitation

- CMR provides:
 - Insights into the etiology of aortic regurgitation
 - Valvular abnormalities
 - Aortic abnormalities
 - o Quantification of the severity of aortic regurgitation
 - Regurgitant volume/fraction
 - Assessment of the consequences of aortic regurgitation
 - LV size
 - LV mass
 - LV systolic function


Aortic regurgitation – cine CMR

- LVOT view cine CMR (still frame)
- Aortic regurgitation jet shown by red arrow
- Can also visualised in:
 - o 3-chamber view
 - o Short axis (aortic valve) view


Assess aortic morphology (and measure aortic diameter) in the 3chamber view (left) and transverse 'HASTE' view (right)

Aortic regurgitation quantification

The aortic regurgitant volume is usually measured *directly* using through-plane flow

CMR:

Do <u>not</u> use the size of the regurgitant jet to assess aortic regurgitation severity on CMR

The aortic regurgitant volume can also be calculated *indirectly* from the difference between left and right ventricular stroke volumes:

AR volume = LV stroke volume - RV stroke volume

The aortic regurgitant fraction is the regurgitant volume divided by the aortic forward flow volume:

AR fraction = <u>Aortic regurgitant volume</u>

Aortic forward flow volume

How do we assess aortic regurgitation with CMR?

- Cine CMR aortic valve anatomy
 - o Long axis (three-chamber and LVOT) views
 - Short axis (en face view at cusp tips)
- Flow CMR aortic valve hemodynamics
 - Regurgitant volume/fraction
- Aortic anatomy and dimensions
- Left ventricular size and systolic function
- Left ventricular hypertrophy/mass

Further reading

Cardiovascular magnetic resonance imaging for valvular heart disease. Technique and validation. *Circulation* 2009; **119**: 468-478 [click here to access online]